

Comprehensive Full-Chip Methodology To Verify Electro-Migration and Dynamic Voltage Drop On High Performance FPGA Designs In The 20nm Technology

> Sujeeth Udipi (Xilinx) Karan Sahni (Ansys)

IRMTech

XILINX. January 28-31, 2014 | Santa Clara Convention Center | Santa Clara, CA

About Xilinx

• Xilinx makes FPGA chips.

- Successful tape-out at 20nm.
- The Xilinx design is a mosaic of functional tiles.
 - For example: RAM tiles, programmable logic tiles, IO tiles, etc.
 - Design mix is dominated by custom designs of moderate size.
- We are limited by vector generation:
 - A complete vector set is generally unavailable.
 - Vectors come in late in the design cycle.
 - Designers often use manually generated, functional vectors.
 - Most vectors are of limited duration.
 - Long vectors result in long runtimes.

Xilinx EM-IR Philosophy

- We must have 100% coverage:
- We must have "acceptable" accuracy:
 - Accuracy must be "within acceptable bounds" for all design styles.
 - Results must trend as per user intuition.
- Default methodology must never be optimistic.
 - Methodology/tool limitations may cause inaccuracy in result.
 - This inaccuracy must always be "bounded and pessimistic".
- We must have user overrides to overcome limitations of default methodology and accuracy.
- Signal-EM penalty is paid for within a fixed time interval.
 - EM result should <u>not</u> depend on the number of transitions in vector.
 - User overrides for activity factor are allowed.

Signal-EM Dependence On Vector *

* Inverter testcase, constant load; current values are for PMOS device of inverter.

Time	lavg	Irms
Cycle	12uA	42uA
SimTime	12uA	42uA

Fig.1 - For clock nets, AVG and RMS currents match for CYCLE and SIM time.

Time	lavg	Irms
Cycle	12uA	42uA
SimTime	9.2uA	37uA

Fig 2 & 3 - For data nets, AVG and RMS currents depend on the number of transitions in any given time interval.

Time	lavg	Irms
Cycle	12uA	42uA
SimTime	3.8uA	24.3uA

Window Slicing For EM Computation

> The idea is to pay the EM penalty within a fixed time period of one cycle.

500e06

8n

10p

- Let's say you have a four cycle simulation (CYCLE1 to CYCLE4)
- Initial delay is 2ns, and each subsequent cycle is 2ns wide.

Simulation Settings:

DYNAMIC_TIME_STEP

DYNAMIC_SIMULATION_TIME

FREQ

Cycle Definitions:

- CYCLE1 " " " " 2ns 4ns
- CYCLE2 " " " " 4ns 6ns
 - CYCLE3 """" 6ns 8ns

Xilinx EM-IR Requirement

• All designs must pass the following checks:

Flow	Must Pass	Coverage	What Is Checked?
Static	IR / AVG-EM	100%	PG gross-checker on all designs
Dynamic	IR / AVG-EM / RMS-EM	<100%	Large drivers / Large arrays Decap check / Jitter Concerns
Signal-EM	AVG-EM / RMS-EM	100%	Mixed-Mode Signal-EM enables 100% coverage

- Level at which EM-IR is run must capture context adequately:
 - Design size must be large enough, comparable to bump pitch.
 - Design must comprise upper metal layers, must include decaps, etc.
- EM result must be independent of the quality of vectors.
 - By default, clock nets are analyzed at TR=2, while non-clock nets at TR=1.
- Design must pass FIT.
 - AVG-EM violations can be waived if design passes FIT.

What is FIT?

- FIT stands for "Failure In Time."
- A fullchip FIT of "1" indicates that the <u>failure rate</u> of the part will be 0.1% after 10 years.
 - The fullchip FIT budget is split between AVG EM and TDDB.
 - The fullchip budget is divided into subblock budgets.
- Subblock FIT budget depends on:
 - Area of the subblock
 - Frequency of the subblock
 - Design Style

FIT-Based EM Check versus Rule-Based EM Check

Budget represents how much design is allowed to contribute to Product Failure Rate (FIT)

> I/Imax from EM Tool

FIT Comparison

>

EM-IR Corner Methodology

- The EM-IR corner is:
 - Fast Transistors
 - High Temperature
 - Extraction is Typical
 - Nominal Supply voltages
- EM-IR corner must match:
 - Power Corner
 - Timing Corner
 - SPICE corner for spice simulations

Power EM-IR: Modes Of Operation

- Transistor-level Power EM-IR flows can be run in two modes:
 - Static:
 - Power is distributed over all transistors in the design.
 - Transistor current is assigned as below:

$$I_{transistor} = \frac{P_{sup}}{V_{sup}} * \frac{W_{transistor}}{\sum W_{transistor}}$$

• The Static check is a gross-checker, but it gives 100% coverage.

- Dynamic (Vectored)

- Only the active/switching areas of the design get any current assignment.
- All transistor currents are probed through a SPICE simulation.
- The Dynamic check is accurate, but gives limited coverage.

Device Current Distribution: Static vs. Dynamic

Dynamic

Total power in both cases was the same,

Dynamic Drop - Decap Efficiency Test

Dynamic Drop - Distance Of Decap

DESIGNCON[®] 2014

Dynamic Drop - Distance Of Decap

unexietribisas 20. del. Joural	
Distance=D1	Apathe Besign, Tax. www.apathedi.com 1019/2012/16/33 Top Deep median_Te May LL:-36/h UN:-36/h UN:-36/h UN:-57-100 Fet downions: UCUTY 0.359 Nordep: 53/hV/ € 2.0% 20/hV/ € 4.0% 15/hV/ € 5.0% 15/hV/ € 5
Vorteetika 27 da Vuud	
Distance=D2	Apenha Design, Inc. www.aposhe-sis.com 10/9/20/20-84 Top thegy.metim_Te- Mage L1:-58/0 UR:-58/70 Feb domains : UCCIIY 0.559 Vervidey: 50.0HV © 2100-58/0HV © 2109-510HV © 2109-500HV © 2109-500HV © 2109-500HV © 2109-500HV © 2109-500HV © 2109-500HV
Nonekserbitetos 20. del 30 n af	
Distance=D3	Apache Berlipp, Loc. www.apacheda.com 10 1920/2 1712 Top Deep periodics_Te Mage LL-18:06 UK: 256 700 Ref. domainto: 10 CCH27 0.559 Non-dog: 80.564 € 2.059 20:64 € 4.1296 167.04 € 4
Distance=D4	2,quarke Design, Inc. www.quarke-dot.com 10/19/2012/1/19 Top Desp.parkinn, Te Mqr L1:-156 UL:-256 UL:-
neveritza 21 di Mind	
Distance=D5	kpeche Design, Loc. www.spache-doi.com 10/9/20/2 /14 Try Thergunetim, Te- Nage L1-16/h (1000) Diet donations: 10/0/2017 = 0.550 Norwedge /1.344 ■ 20/0 - 71 2mV ■ 21/00 - 71 2mV

Decap Placement Recommendation

D is distance: D5 >> D4 >> D3 >> D2 >> D1 R is decap ratio: R5 >> R4 >> R3 >> R2 >> R1

Power Delivery System Overview

IR Drop Limit – Static vs. Dynamic

• Components of IR drop:

- Package Drop
- On-die Drop

• How to arrive at a Static IR limit?

- An arbitrary low number!
- Average drop over time average drop from a worst case scenario.
- Static Limit can match DC offset used in timing characterization.
- How to arrive at a Dynamic IR limit?
 - Timing characterization
 - Clock Jitter simulations
 - Pay attention to large drivers and sensitive circuitry
 - Total IR drop budget is split between off-die and on-die IR drop
 - Simulations include package inductor model

EM Budgeting / Failure Mechanisms

• Safety margins are built in:

- Process/Fab Margin
- Design Margin
- Failure Mechanisms in EM:
 - AVG EM limit is linked to metal voids.
 - RMS EM limit is linked to heating.
 - Heating causes further drop in AVG EM limit.
- Unidirectional / bidirectional segments:
 - Unidirectional more susceptible to AVG EM failures
 - Bi-directional more susceptible to RMS failures
- Poly/Metal Resistor Instances and Inductors:
 - Resistor instance paths are not valid candidates for the IR drop limit rules.
 - We "break" these paths so IR analysis is done up to the first resistor or inductor instance only and EM analysis is done on the internal path.

DESIGNGON[®] 2014

Why We Should Model Heat Flow

00

Vectorless Signal-EM – Driver Current Profiles

- Single cycle simulation will be performed(1charge,1discharge) for different frequency domains.
- Uni-directional current(crowbar) will be scaled during post-processing (w/o simulation).
- Toggle rate will be used for lavg/Irms computation only (not for constructing current waveforms).

Vectorless / Mixed-Mode Signal-EM

- Vectorless gives 100% coverage!
 - Default values are set to be aggressive.
- Results scale with frequency, slew rate and toggle rate.
 - Assuming the following reference EM settings:
 - Assuming the following DUT settings:

EM Scaling with Electrical Parameters	AVG	RMS
Frequency	f2/f1	Sqrt (f2/f1)
Slew	No change	Sqrt (slew2/slew1)
Load	load2/load1	Sqrt (load2/load1)
Toggle Rate	TR2/TR1	?

RMS EM Dependence On Peak Current

> RMS EM is strongly influenced by peak current.

- RMS is the SQRT of the average of the square of the current.

* This assumes current profiles are completely enclosed within the same cycle time of 2.

RMS EM Dependence On Slew Rate

> RMS EM is strongly influenced by peak current.

- RMS is the SQRT of the average of the square of the current.

* This assumes current profiles are completely enclosed within the same cycle time of 2.

Should I run Vectored Or Vectorless Signal-EM?

DESIGNCON[®] 2014

Early-PG – Determine Ballpark Budgets

Accuracy – Transistor Level Vectored IR

- **Y**-axis represents % of the total count of destination device diffusions.
- □ X-axis is the accuracy range -10mV to 40mV.
- □ Sample size: 10,000 worst transistors from 6 testcases
- □ Both analog and digital testcases were considered.

Accuracy – Transistor Level Vectored Signal-EM

- **Y**-axis is normalized to %.
- □ X-axis is the accuracy range -50% to +50%.
- Sample size small ~ 200 nets
- □ Both analog and digital blocks were considered.

Various Design Styles

• Our EM-IR Tools:

- − Totem □For transistor level designs
- Redhawk

 □For cell based designs
- We will have the following design styles:
 - PNR Blocks
 - Custom Blocks
 - Mixed Blocks (Custom + PNR blocks)
- Blocks come in different sizes:
 - Medium (no capacity issues)
 - Big (possible capacity issues)
- Levels of Hierarchy / Analysis:
 - Block level
 - Subblock level
 - Arbitrary level (for exceptional cases)

DesignCon

Fullchip Partitioning

>A high level view of fullchip:

• Anatomy of a "Mixed" block:

Lib/Macro/Custom

PNR Boundary

PNR	Mixed
Custom	

Design Styles And Tool Considerations

Common Design Styles:

Туре	Flow	Comments
Standard Cell	Cell Level	Can't do FIT
Custom	Transistor level	100% coverage
Mixed Blocks	Cell and/or Transistor Level	Some coverage loss

• Size Considerations:

Size	Runtime*	Cell Flow	Transistor Flow
Small	3 hours ?	1 million instances	0.3 million transistors
Medium	1-2 days	n/a	1 million transistors
Large	2-4 days	n/a	2+ million transistors

* This excludes SPICE run time. Assumes dedicated machine.

"Divide And Conquer" Approach

How to break hierarchies?

- Level of analysis must be considered early in design cycle.
- Choice of subblock hierarchy impacts fullchip analysis.
- Poor planning results in loss of coverage and loss of accuracy.
- Recommendations:
 - Fullchip analysis should traverse down to level of subblock analysis.
 - Subblock models must be propagated to fullchip analysis.

Required To Run	At Level	Flow	Comments
Static and Dynamic Power EM-IR	Block level	Transistor	
AVG and RMS Signal-EM	Block level	Transistor	Run Vectorless Signal-EM
Static and Dynamic Power EM-IR AVG and RMS Signal-EM	Custom Cell	Transistor	Follow directions for "Custom" blocks

Design Types And Flow Styles

BLOCK	ANALYSIS	BLOCK DYNAMIC	
TIFE		Vectored	Vectorless
Custom	Power EM/IR	Transistor Level Vectored	
	Signal EM	Transistor Level Analog	
P&R	Power EM/IR	Cell Level Vectorless	
	Signal EM	Cell Level Vectorless	

Package Simulations With On-Die Models

00

Interposer Simulations

Interposers:

- Stand-alone run
- Static Simulation
- Very low IR budget allowed
- Must fix AVG EM
- Regional power assignments

Summary

Highlights:

- We have very high design coverage (~100%).
- We have very good accuracy.
- Default methodology is conservative.
- EM-IR methodology has withstood the scrutiny of the design community.

• Areas Of Improvement:

- Handling super large designs (capacity and runtime)
- Managing hierarchy / Integrating multiple runs to analyze in-between metal
- Hierarchical FIT

Thank You!

